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Part 1 of 5: Pseudocode



https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx 

https://www.vcaa.vic.edu.au/news-and-events/professional-
learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx 

https://www.vcaa.vic.edu.au/news-and-events/professional-
learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx 

Pseudocode in the new VCE Mathematical Methods 
and Specialist Mathematics Study Designs

Mathematical Methods Study Design

Specialist Mathematics Study Design

Pseudocode

https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx




Pseudocode:
A plain language description of the steps in an algorithm.
Uses structural conventions of a programming language. 

To be read by humans, not machines. 

Pseudocode can be translated into real code.

Algorithm: 
A set of instructions aimed at achieving a task. 

Muḥammad ibn 
Mūsā  al-Khwārizmī 

(c. 780 – c. 850) 



Reserved or key words in Pseudocode

Define

Input

For … From … To …

If … Then … Else … Else If …

While … Do …

Return

EndWhile

EndFor

Print

EndIf



sum = sum + 1

sum  sum + 1

The equals sign and the arrow symbol

equivalent 
statements

The new sum equals the current sum + 1.

The current sum + 1 goes to new sum.

Both mean increment the variable sum by 1.



Flow chartPseudocode versus

An informal high-level 
description of the 

operating principle of 
an algorithm.

Written in natural language 
and mathematical symbols.

A diagrammatic 
representation that 
illustrates a solution 

model to a given problem.

Written using 
various symbols.



sum  0
count  1
While count ≤ 5 Do
 enter n
 sum  sum + n
 count  count + 1
Print sum

start

sum = 0 & count = 1

is 
count 
≤ 5?

sum = sum + n

enter n

print sum

stop

Yes

No

count = count + 1

Indent by using Tab, 
usually about 4 spaces.

Flow chartPseudocode

Example: Add five numbers:



The three key elements of algorithm design:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

These three elements can be arranged in 
a variety of ways to achieve an outcome. 

This is what allows code and computers  
to do a myriad of different things.



1. Sequencing A series of statements.

sum  a + b

Print sum, difference, product, quotient

Input a

Input b

difference  a – b

product  a * b

quotient  a / b



2. Decision-making

If a condition is TRUE Then
 …
 …
 …
Else
 …
 …
 …
EndIf  

Deciding on a course of 
action(s) depending on 
the state of a condition 
being true or false.

Any number of statements.

Any number of statements.

Note the indentation makes the if structure easier to read.

The Else part is optional.



3. Repetition (iteration)

For i From 1 To 10
 …
 …
 …
 …
EndFor

These statements are repeated 10 times.

Repeating the same 
statement(s), depending 
on the state of a condition.

A for loop has a fixed number of repetitions.

Note the indentation makes the for structure easier to read.



3. Repetition (iteration)

While a condition is TRUE Do
 …
 …
 …
 …
EndWhile

These statements are repeated 
while a condition is true.

Repeating the same 
statement(s), depending 
on the state of a condition.

A while loop has a variable number of repetitions.

Note the indentation makes the while structure easier to read.



Mathematical operation symbols

Add  +

Subtract  – 

Multiplication  *

Division  /

Exponentiation  ^ 

Equals  = or   

Bracket (parentheses)   ( )

Greater than  >

Less than  <

Less than or equal to ≤ 

Greater than or equal to  ≥

Not equal to ≠

Logical operations:   and, or, not



Defining functions

Functions are sections of code that are called 
upon the perform specific tasks numerous times. 

If a program is going to do the same function 
multiple times, the function is defined once 

before it is called and then can be called when required.   



Defining functions

define f(x)
    return 3*x+2

Example:

Functions 
must be defined 

BEFORE 
they are called.

a = f(5) = 3(5)+2 = 17Results:
b = f(7) = 3(7)+2 = 23

# calling code
...
...
a = f(5)
...
b = f(7)
...



Assessing pseudocode



Students will NOT be required to write pseudocode from scratch.

Assessing the understanding of pseudocode

Students may be required to analyse what a section 
of pseudocode (or a particular line of pseudocode) is doing.

Students may be required to fill in some missing 
statement(s) to complete a section of pseudocode.

Students may be required to debug a piece of pseudocode, 
(i.e. identify an error in a section of pseudocode & correct it.)



The value of the variable sum 
after one iteration of the While 
loop would be closest to

A.   1.281
B.   1.289
C.   1.463
D.   1.617
E.   2.136

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf 

Answer is C.

The algorithm below, described in pseudocode, estimates 
the value of a definite integral using the trapezium rule.

Inputs: f(x), the function to integrate
        a, the lower terminal of integration
        b, the upper terminal of integration
        n, the number of trapeziums to use

Define trapezium(f(x),a,b,n)
    h  (b - a) ÷ n
    sum  f(a) + f(b)
    x  a + h
    i  1    
    While i < n Do
        sum  sum + 2 × f(x)
        x  x + h
        i  i + 1
    EndWhile
    area  (h / 2) × sum
    Return area      

trapezium(loge(x),1,3,10)

Consider the algorithm 
with the following inputs.

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf


Which would be returned when the 
algorithm is implemented as given?

A.   – 0.351
B.   – 0.108
C.   3.25
D.   3.5
E.   4

Inputs: f(x), a function of x in radians
        a, the lower interval endpoint
        b, the upper interval endpoint
        max, the maximum number of iterations

Define bisection(f(x),a,b,max)
    If f(a) × f(b) > 0 Then
        Return “Invalid interval”
    i  0
    While i < max Do
        mid  (a + b) ÷ 2
        if f(mid) = 0 Then
            Return mid        
        Else If f(a) × f(mid) < 0 Then
            b  mid
        Else
            a  mid
        i  i + 1
    EndWhile

https://www.vcaa.vic.edu.au/Documents/exa
ms/mathematics/mathmethods2-samp-w.pdf 

Answer is D.

Consider the algorithm below, which uses the bisection method to 
estimate the solution to an equation in the form 𝑓𝑓(𝑥𝑥) = 0.

The algorithm is implemented as follows.

bisection(sin(x),3,5,2)

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf


https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf 

Answer is E. 

Inputs: f(x), a function of x 
        x0, an initial estimate 
        for the x-intercept of f(x)
                
Define newton(f(x), x0)
  df f(x)  the derivative of f(x)
  i  0
  prev_x  x0
  While i < 1000 Do
    next_x  prev_x – f(prev_x) ÷ df(prev_x)
      
       
      
    Else
        prev_x  next_x
        i  i + 1
    EndWhile

One way of implementing Newton’s method using pseudocode, with a tolerance level of 0.001, is shown below.
The pseudocode is incomplete, with two missing lines indicated by an empty box.

If next_x – prev_x < 0.001 Then 
    Return prev_x

Which one of the following options would 
be most appropriate to fill the empty box?

If next_x – prev_x < 0.001 Then 
    Return next_x

If prev_x – next_x < 0.001 Then 
    Return next_x

If –0.001 < next_x – prev_x < 0.001 Then 
    Return prev_x

If –0.001 < next_x – prev_x < 0.001 Then 
    Return next_x

A.

B.

C.

D.

E.

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf


The output of the pseudocode 
is a list of numbers.
The final number in the list is

A.    3
B.    18
C.    38
D.    72
E.    78

https://www.vcaa.vic.edu.au/Documents/e
xams/mathematics/specmath2-samp-w.pdf 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 1:

𝑓𝑓 = 2 + 2 × 3 = 8

𝑡𝑡𝑡 = 𝑓𝑓 = 8

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 2:

𝑓𝑓 = 2 + 2 × 8 = 18

𝑡𝑡𝑡 = 𝑓𝑓 = 18

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 3:

𝑓𝑓 = 2 + 2 × 18 = 38

𝑡𝑡𝑡 = 𝑓𝑓 = 38

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓 = 38

Answer is C. 

The procedure below has been written in pseudocode.

declare integer n
declare integer f
declare integer t1
declare integer t2

set f to 0
set t1 to 2
set t2 to 3
set n to 3

repeat n times
    f = t1 + 2 × t2
    t2 = f
    print f
end loop

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/specmath2-samp-w.pdf
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/specmath2-samp-w.pdf


𝐁𝐁𝐁𝐁 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢,𝒇𝒇 𝒙𝒙  
𝐢𝐢𝐢𝐢 𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 
𝐚𝐚𝐚𝐚𝐚𝐚 𝐡𝐡𝐡𝐡𝐡𝐡 𝐭𝐭𝐭𝐭𝐭𝐭 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 →

−𝟑𝟑 𝟐𝟐 𝟑𝟑
𝒙𝒙

𝒚𝒚

𝐀𝐀𝐀𝐀𝐀𝐀 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐢𝐢𝐢𝐢 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝐚𝐚𝐚𝐚𝐚𝐚:−𝟑𝟑,𝟐𝟐,𝟑𝟑

𝟏𝟏𝟏𝟏

𝐁𝐁𝐁𝐁𝐁𝐁 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢 𝐧𝐧𝐧𝐧𝐧𝐧 𝐭𝐭𝐭𝐭𝐭𝐭 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝐢𝐢𝐢𝐢 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐭𝐭𝐭𝐭𝐭𝐭 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭.

𝐓𝐓𝐓𝐓𝐓𝐓 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚.

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 @ 𝒙𝒙 = 𝟎𝟎 
𝐢𝐢𝐢𝐢 − 𝟗𝟗, 

𝐚𝐚𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩 𝐭𝐭𝐭𝐭𝐭𝐭 
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 
𝐨𝐨𝐨𝐨 𝐭𝐭𝐭𝐭𝐭𝐭 𝒙𝒙 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭.

𝐎𝐎𝐎𝐎 𝒇𝒇 𝒙𝒙 = (𝒙𝒙 − 𝟐𝟐)(𝒙𝒙 + 𝟑𝟑)(𝒙𝒙 − 𝟑𝟑)

𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟑𝟑 − 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟗𝟗𝟗𝟗 + 𝟏𝟏𝟏𝟏

2024



Define f(x) = x^3 – 2x^2 – 9x + 18

Set c to the value of f(0) = 18

If c is negative, make it positive. This positive value will be used 
as the starting value for finding the integer roots to f(x).

Beginning with c = 18, the algorithm tests to see if 
f(18)=0?, f(-18)=0?, f(17)=0?, f(-17)=0?, f(16)=0? f(-16)=0?, ... 
... f(2)=0?, f(-2)=0?, f(1)=0?, f(-1)=0?. 
and prints the value of c or –c only when f(c)=0 or f(-c)=0. 

It does not test f(0)=0 because f(0)=18. This is the y-intercept.

It finds these three roots in the order: f(3)=0, f(-3)=0, f(2)=0. 

Hence, the algorithm prints the roots in the following order: 3, -3, 2.    

These are the integer roots of f(x).

The algorithm with its comments 
which explains what it’s doing.

The answer is option D: 3, -3, 2

2024



Part 2 of 5: Python 



The computer language Python

Python code reads similar to pseudocode. 

Very popular open-source programming language.

Easy to learn.

Python has excellent resources at:  https://www.python.org/

Creator of Python:
Guido van Rossum 

(1956 –  ) 

https://www.python.org/


Reserved or key words in Python

def return

input print

if

for ... in range

while

else elif

int

float

Number types:Defining functions

Input and output

Decision making

Iterations 

(integers)

(decimals)



Python is very strict 
on correct indentation.

If you make an indentation error, 
Python will notify you of it and 
locate it for you to correct. 

Errors MUST be corrected 
before a program will run.

Indentation makes pseudocode 
and real code more readable.

...

...
for
    ...
    ...
    ...
...
...
if
    ...
    ...
else
    ...
    ...
    ...
...
...
while
    ...
    ...
...
...

...

...
for
...
...
...
...
...
if
...
...
else
...
...
...
...
...
while
...
...
...
...

No
Indentation 

Proper 
indentation 

Indentation



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

x = a + b

y = 3 * x - 4

z = math.sqrt(3**2 + 4**2)

pi = 3.14



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making  
3. Repetition (iteration) if x == 0:

 ...
 ...
 ...
else:
 ...
 ...
 ...

In an if statement, two 
equal signs are required 
as this is a comparison, 
not an assignment.



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

if x == 0:
 ...
 ...
 ...
 ...

if x != 1:
 ...
 ...
 ...
 ...

if x > 2:
 ...
 ...
 ...
 ...

if x <= 3:
 ...
 ...
 ...
 ...



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration) 

for n in range(1, 10+1, 1): # repeat 10 times
 ...
 ...
 ...
 ...

Step size
Final number
Starting number



The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

while x < 100: # repeat while x < 100
 ...
 ...
 ...
 ...

x must reach the value of 100
otherwise, the loop will be infinite 



Inputting in Python

a = float(input("a = ")) 
# get a floating-point number from the user 
# and assign it to the variable a.

b = int(input("b = "))
# get an integer value from the user 
# and assign it to the variable b.

User Python

Note that the number of open brackets 
MUST equal the number of closed brackets.



Outputting in Python

print(a, b, a + b)
# print the variables a, b and the sum a + b

print(“a = ”, a)
# print the string of text “a = ” and 
# the actual value of a next to this

User Python

print()   # print a blank line



Comments in Python

Example:

x = int(input(“x =”))  # get the first number
y = int(input(“y =”))  # get the second number
z = x + y    # add the numbers 
print(“z = ”, z)   # display the result 

Comments are preceded 
by the hash symbol (#)

Python code Python comments

Comments make real code
easier to understand.



Commenting out sections of Python code
Example:

Statement 1
Statement 2
’’’
Statement 3
Statement 4
Statement 5
’’’
Statement 6
Statement 7
Statement 8
Statement 9

Executed
Executed
‘’’
Not executed
Not executed
Not executed
‘’’ 
Executed
Executed
Executed
Executed

Skipped 

Start of comments 
three apostrophes 

End of comments 
three apostrophes



Python mathematical operation symbols

Add  +

Subtract  – 

Multiplication  *

Division  /

Exponentiation  ** (not ^) 

Equals  = 

Brackets (parentheses)   ( )

Greater than  >

Less than  <

Less than or equal to  <=

Greater than or equal to  >=

Not equal to   !=

Logical operations:   and, or, not

or    %



Python mathematical predefined functions

square root:  math.sqrt(x)

factorial :  math.factorial(n)

import math # required for mathematical functions

absolute value:  abs(x) 𝑥𝑥

𝑥𝑥

𝑛𝑛!



Python mathematical predefined functions

logarithm base 10:  math.log10(x)

sine:  math.sin(x)

cosine:  math.cos(x)

tangent:  math.tan(x)

exponential:  math.exp(x)

natural logarithm:  math.ln(x)

sin 𝑥𝑥

cos 𝑥𝑥

tan 𝑥𝑥

𝑒𝑒𝑥𝑥

ln 𝑥𝑥

log10 𝑥𝑥

import math # required for mathematical functions



https://www.onlinegdb.com/ 

Make sure you select Python 3

Click here to get more window space

Stop the program
Run the program

https://www.onlinegdb.com/


Define gcd(a, b)
    While a ≠ b Do 
        If a > b Then
            a  a − b
        Else
            b  b − a
    Return a

calling code
a = 48
b = 64
Print(a, b, gcd(a, b))

def gcd(a, b):    
 while a != b:         
  if a > b:            
   a = a - b        
  else:           
   b = b - a    
  return a
    
# driver code
a = 48
b = 64
print(a, b, gcd(a, b))

GCD Pseudocode GCD Python code

Euclidian algorithm to find the GCD of a pair of numbers



Implementing pseudocode 
in Python on a computer

Part 3 of 5:

Delegates can select which 
algorithms they want to code.



SIMPLE ALGORITHMS:

 Swap algorithm 

 Euclid’s Greatest common divisor algorithm 

 Generating random numbers for simulations

List of Python programs



List of Python programs continued …

Pi algorithms:
 
•  Madhava-Gregory-Leibniz formula
•  Newton's method
•  Bisection method
•  Monte Carlo simulation method

e algorithm: 
• e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ...



MISCELLANEOUS ALGORITHMS

    Generating Pythagorean triples

    List primes

    Factorial function

    Square root function

List of Python programs continued …



Sine function and cosine function:
These are used to generate a sin, cos and tan 
table of values from 0, 15, 30, 45, ..., 360

Integration: 
•  Trapezium rule
•  Riemann sum

Complex numbers calculations 

List of Python programs continued …



# swap algorithm

x = float(input("x = ")) # get the 1st number
y = float(input("y = ")) # get the 2nd number
print(x, y) # print the numbers before the swap
x = x + y
y = x - y
x = x – y
print(x, y) # print the numbers after the swap

Note that this algorithm does NOT require a temporary variable.

The actual algorithm.



# Euclid’s Greatest common divisor algorithm
 
def gcd(a, b):
    while a != b:     # != means ≠
        if a > b:
            a = a - b
        else:
            b = b - a
    return a

# driver code    
a = 48
b = 64
print(a, b, gcd(a, b))

Euclid 
(fl. 300 BC) 



# generating random numbers, integers and decimals

import random

# random.seed(1) # generate the same random numbers

for i in range(1, 5+1, 1):   # loop 5 times 
    x = random.randint(0, 9) # 0 ≤ x ≤ 9 integer  
    y = random.random()      # 0 ≤ y ≤ 1 decimal
    print(i, x, y)

Random Results:

1 6 0.06915053997455245
2 1 0.3046571134385604
3 4 0.7340190767728589
4 9 0.1538597662419427
5 1 0.8113823902195922

These random numbers can be 
used for simulation purposes. 
An example of this will be the 
Monte Carlo simulation method 
for calculating pi. 



# Pi Madhava Gregory Leibniz formula

# pi = 4/1 - 4/3 + 4/5 - 4/7 + 4/9 - ...

pi = 0
den = 1
while 1: # infinite loop
    pi = pi + 4/den 
    print(den, pi)
    den = den + 2
    pi = pi - 4/den 
    print(den, pi)
    den = den + 2

𝜋𝜋 =
4
1
−

4
3

+
4
5
−

4
7

+
4
9
−⋯

Gottfried Wilhelm 
(von) Leibniz 

(1646 – 1716) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.



# Newton's method for finding solutions to equations

import math

def f(x): # the function
    return math.sin(x) # sin(pi) = 0

def df(x): # the derivative of the function
    return math.cos(x)  # to find pi

i = 1     # iteration number   
x = 3     # initial estimate
error = 1 # dummy error value
while error > 10e-9:
    xnext = x - f(x)/df(x)
    error = abs(xnext - x)
    x = xnext
    print(i, x)
    i = i + 1

Isaac Newton 
(1642 – 1728)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓 𝑥𝑥𝑛𝑛
𝑓𝑓𝑓 𝑥𝑥𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞.



# Bisection method to calculate pi
# The function sin(x) = 0 when x = pi

import math
a = 3; b = 4; i = 1
while i <= 60:
    c = (a + b) / 2
    if math.sin(a) * math.sin(c) < 0:
        b = c
    else:
        a = c
    print(i, “  ”, c)
    i = i + 1

𝑦𝑦 = sin 𝑥𝑥
𝑥𝑥

𝑥𝑥 = 𝜋𝜋



# Pi using the Monte Carlo simulation method

import math
import random

random.seed()

count = 0 
iteration = 0

while iteration < 1000000:   
    x = random.random() # 0 <= x <= 1 
    y = random.random() # 0 <= y <= 1
    sum = x * x + y * y
    if sum <= 1:
        count = count + 1
    iteration = iteration + 1
    pi = count / iteration * 4
    print(iteration, pi)

0 1

1

𝑦𝑦

𝑥𝑥

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝜋𝜋
4

𝑥𝑥2 + 𝑦𝑦2 ≤ 1

𝑥𝑥2 + 𝑦𝑦2 > 1



# e Euler’s number 2.7182818284590...
 
# e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ...

import math
e = 1
den = 1
while den <= 20:
    e = e + 1/math.factorial(den)
    print(den, e)
    den = den + 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞.



# Euclid's algorithm to generate Pythagorean triples

import math
print("Generating Pythagorean triples:")
print("")
print("i    m n    a b c")   
print("")
i = 0
maximum = 10
for m in range(2, maximum, 1):
    for n in range(1, m, 1):
        i = i + 1
        a = m**2 - n**2
        b = 2 * m * n
        c = m**2 + n**2        
        print(i, "  ", m, n, "  ", a, b, c,)

𝑎𝑎 = 𝑚𝑚2 − 𝑛𝑛2 

𝑏𝑏 = 2𝑚𝑚𝑚𝑚 

𝑐𝑐 = 𝑚𝑚2 + 𝑛𝑛2

𝑚𝑚 & 𝑛𝑛 ∈ ℕ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚 > 𝑛𝑛 > 0
Pythagoras 

(c. 570 – c. 495 BC)

Euclid 
(fl. 300 BC) 



# List primes

# isPrime function
import math

def isPrime(n):
    if (n <= 1):
        return False
    for i in range(2, int(math.sqrt(n))+1):
        if (n % i == 0):   
            return False 
    return True

# List the primes up to 100
for i in range(1, 100+1, 1):
    if isPrime(i):
        print(i)

2, 3, 5, 7, 11, 13, 17, 19, …

Euclid 
(fl. 300 BC) 



# my factorial function

def factorial(n): # n >= 0
    if n == 0:
        return 1
    else:
        f = 1
        for i in range(1, n+1, 1):
            f = f * i
        return f

# driver code 
nfPrev = 1
for a in range(0, 70+1, 1):
    nf = factorial(a)
    print(a, nf, nf/nfPrev)
    nfPrev = nf

𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 𝑛𝑛 − 3 × ⋯× 3 × 2 × 1



# my square root function

def sqrt(a): 
    if a == 0:
        return 0
    else:
        error = 1 
        x = a/2 
        while abs(error) > 1e-12:
            xNext = (x + a/x)/2
            error = abs(xNext - x)
            x = xNext
        return x    

# driver code 
for a in range(1, 100+1, 1):
    print(a, sqrt(a))

𝐼𝐼𝐼𝐼 𝑥𝑥 = 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥0 =
𝑎𝑎
2

 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛+1 =
𝑥𝑥𝑛𝑛 + 𝑎𝑎/𝑥𝑥𝑛𝑛

2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎 = 𝑎𝑎



def factorial(n): # sin and cos function require n!
    if n == 0:
        return 1
    else:
        f = 1
        for i in range(1, n+1, 1):
            f = f * i
        return f    

def sin(x):  # the sine function requires n!
    sinx = (x**1)/factorial(1) - (x**3)/factorial(3)
    for n in range(5, 99, 4):
        sinx = sinx + x**(n)/factorial(n) - x**(n+2)/factorial(n+2)
    return sinx

def cos(x):  # the cosine function requires n!
cosx = (x**0)/factorial(0) - (x**2)/factorial(2)
for n in range(4, 100, 4):

cosx = cosx + x**(n)/factorial(n) - x**(n+2)/factorial(n+2)
return cosx

𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 𝑛𝑛 − 3 × ⋯× 3 × 2 × 1

Continued on the next slide …

cos 𝑥𝑥 = 1 −
𝑥𝑥2

2! +
𝑥𝑥4

4! −
𝑥𝑥6

6! +
𝑥𝑥8

8! −⋯

sin 𝑥𝑥 = 𝑥𝑥 −
𝑥𝑥3

3! +
𝑥𝑥5

5! −
𝑥𝑥7

7! +
𝑥𝑥9

9! −⋯



Continued from the previous slide …

# driver code
print("deg rad sin(deg) cos(deg) tan(deg)")
for d in range(0, 360+1, 15):

r = d/180 * 3.141592653589793
print(d, r, sin(r), cos(r), sin(r)/cos(r)) 
# list sin cos tan in 15 degree increments

Results:

deg rad sin(deg) cos(deg) tan(deg)
0 0.0 0.0 1.0 0.0
15 0.2617993877991494 0.2588190451025207 0.9659258262890684 0.2679491924311226
30 0.5235987755982988 0.49999999999999994 0.8660254037844386 0.5773502691896257
45 0.7853981633974483 0.7071067811865475 0.7071067811865475 1.0
60 1.0471975511965976 0.8660254037844385 0.5000000000000001 1.7320508075688765
75 1.3089969389957472 0.9659258262890681 0.2588190451025207 3.7320508075688776
90 1.5707963267948966 1.0000000000000002 4.2539467343847745e-17 2.3507581604559628e+16
… 



define f(x):
 return sin(x)

a  0
b  5
n  10
h  (b - a)/n
left  a
right  a + h
sum  0
for i from 1 to n
 strip  0.5 * (f(left) + f(right)) * h
 sum  sum + strip
 left  left + h
 right  right + h
end for

print sum

Pseudocode for integration 
using the trapezium rule

𝑦𝑦 = sin 𝑥𝑥

𝑦𝑦

𝑥𝑥

10 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9979429863544

1

𝜋𝜋
2

𝜋𝜋
2

, 1



# Integration: Trapezium rule 

import math

def f(x):   # define the function
    return math.sin(x)

#driver code
a = 0            # lower limit of integration
b = math.pi/2    # upper limit of integration
n = 10           # number of trapezium strips
h = (b - a) / n  # height of each trapezium strip
left = a
right = a + h
sum = 0
for i in range (1, n+1, 1):
    strip = 1/2 * (f(left) + f(right)) * h
    sum = sum +  strip
    left = left + h
    right = right + h
print(sum)

Python code for integration 
using the trapezium rule

𝑦𝑦 = sin 𝑥𝑥

𝑦𝑦

𝑥𝑥

10 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9979429863544

1

𝜋𝜋
2

𝜋𝜋
2

, 1



# Integration: Riemann Sum

import math

def f(x):        # define the function
    return math.sin(x)  # f(x) = sin(x)

# driver code

a = 0               # lower limit of integration
b = math.pi/2       # upper limit of integration
n = 100             # number of trapezium strips

dx = (b - a) / n    # dx width of each rectangle
sum = 0
x = a
while x <= b:
    stripArea = f(x) * dx
    sum = sum + stripArea
    x = x + dx
print(sum)

Bernhard Riemann 
(1826 – 1866)

Python code for 
integration using a 
Riemann sum



Complex numbers

−1 = 𝑖𝑖

0
𝑅𝑅𝑅𝑅

𝐼𝐼𝐼𝐼

1

𝑖𝑖

0, 1 = 𝑖𝑖
1, 0

0, 1



Complex numbers

import cmath  # required for complex number calculations

e = cmath.e                  # define e

pi = cmath.pi                # define pi

i = 1j                       # define i

i = complex(0, 1)            # define i

i = cmath.sqrt(-1)           # define i

i = cmath.e**(1j*cmath.pi/2) # define i

Alternative 
definitions 
of i



Complex numbers

𝑒𝑒𝑖𝑖𝜋𝜋 = −1 print(e**(i*pi))

print(e**(i*pi)+1)𝑒𝑒𝑖𝑖𝜋𝜋 + 1 = 0

−
1
2

+
3

2
𝑖𝑖

3

= 1 print((-1/2+(cmath.sqrt(3)/2)*i)**3)

−1 = 𝑖𝑖 print(cmath.sqrt(-1))

𝑖𝑖2 = −1 print(i**2)

Euler’s identity



Part 4 of 5:

Implementing 
Python on the TI CAS



Python IS available
on the new 

TI-nspire CX II 
CAS Calculator

(Python is NOT available 
on the fx CP400
Casio ClassPad)



Bisection method 
to find the value 
of pi

Start 
typing 
Python 
code here.



for d in range(1,10000,1):
    d=d+1–1*1/1

# Optional delay to slow down the program.

Bisection method to 
find the value of pi

To run the code press 
menu 2 1 (Ctrl+R)



Bisection method to find the value of pi



Python on the TI CAS 
has many of the 
commands built into 
its menu system.

This will save you a lot of typing 
on the TI-CAS’s non-QWERTY. 

The following screens show 
the main Python menu features.



menu 1 2 3 4 5 6 



menu 7 8 9 A B 

To stop an infinite loop in 
Python on the CAS, press and 
hold the On button for a few 
seconds. This will force it to 
stop. However, this will not 
work on the software emulator.



Free online resources:
Tutorials and

Integrated Developments Environments (IDEs) 

Part 5 of 5:

An IDE is where you can write and run your own 
Python code to test your pseudocode and algorithms.



https://wiki.python.org/moin/BeginnersGuide https://www.w3schools.com/python/default.asp 

Free online tutorials for learning Python

https://wiki.python.org/moin/BeginnersGuide
https://www.w3schools.com/python/default.asp


https://www.onlinegdb.com/ 

Make sure you select Python 3

https://www.online-python.com/ 

Free online Python Integrated Development Environments (IDEs). 

https://www.onlinegdb.com/
https://www.online-python.com/


Enzo Vozzo 

After working as a Technical Officer at Telstra, Enzo graduated from Monash University in 2005 
with a Bachelor of Technology (Computer Studies) and taught Electronics and Communications 
Engineering at Chisolm TAFE. 

In 2013 he graduated from RMIT University with a Graduate Diploma of Education teaching 
Secondary School Mathematics and Science.

Since 2016 he has been teaching Mathematics at Mentone Grammar.

Email: exv@mentonegrammar.net 

                            iphiepi: https://www.instagram.com/iphiepi/ 

                     Channel: Maths Whenever: 
https://www.youtube.com/channel/UCFLdfe_y2OQ1MZvGjha9taQ/videos 

𝑖𝑖 = −1 𝜙𝜙 =
1 + 5

2

𝑒𝑒 = �
𝑛𝑛=0

∞
1
𝑛𝑛! 𝜋𝜋 = 4�

0

1

1 − 𝑥𝑥2 𝑑𝑑𝑑𝑑

mailto:exv@mentonegrammar.net
https://www.instagram.com/iphiepi/
https://www.youtube.com/channel/UCFLdfe_y2OQ1MZvGjha9taQ/videos
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