
Presented by Enzo Vozzo, 5 & 6 Dec 2024
Mathematics Teacher at Mentone Grammar

Implementing pseudocode and
algorithms in Python on

computer and CAS

Part 1 of 5: Pseudocode

Part 2 of 5: Python

Part 3 of 5: Implementing Pseudocode in Python

Part 4 of 5: Implementing Python on the TI CAS

Part 5 of 5: Free online resources for learning Python

Core
Presentation

Options

Part 1 of 5: Pseudocode

https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx

https://www.vcaa.vic.edu.au/news-and-events/professional-
learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx

https://www.vcaa.vic.edu.au/news-and-events/professional-
learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx

Pseudocode in the new VCE Mathematical Methods
and Specialist Mathematics Study Designs

Mathematical Methods Study Design

Specialist Mathematics Study Design

Pseudocode

https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/Pages/PseudoCode.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCESpecialistMathematicsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx
https://www.vcaa.vic.edu.au/news-and-events/professional-learning/VCE/Pages/VCEMathematicalMethodsWebinars.aspx

Pseudocode:
A plain language description of the steps in an algorithm.
Uses structural conventions of a programming language.

To be read by humans, not machines.

Pseudocode can be translated into real code.

Algorithm:
A set of instructions aimed at achieving a task.

Muḥammad ibn
Mūsā al-Khwārizmī

(c. 780 – c. 850)

Reserved or key words in Pseudocode

Define

Input

For … From … To …

If … Then … Else … Else If …

While … Do …

Return

EndWhile

EndFor

Print

EndIf

sum = sum + 1

sum  sum + 1

The equals sign and the arrow symbol

equivalent
statements

The new sum equals the current sum + 1.

The current sum + 1 goes to new sum.

Both mean increment the variable sum by 1.

Flow chartPseudocode versus

An informal high-level
description of the

operating principle of
an algorithm.

Written in natural language
and mathematical symbols.

A diagrammatic
representation that
illustrates a solution

model to a given problem.

Written using
various symbols.

sum  0
count  1
While count ≤ 5 Do
 enter n
 sum  sum + n
 count  count + 1
Print sum

start

sum = 0 & count = 1

is
count
≤ 5?

sum = sum + n

enter n

print sum

stop

Yes

No

count = count + 1

Indent by using Tab,
usually about 4 spaces.

Flow chartPseudocode

Example: Add five numbers:

The three key elements of algorithm design:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

These three elements can be arranged in
a variety of ways to achieve an outcome.

This is what allows code and computers
to do a myriad of different things.

1. Sequencing A series of statements.

sum  a + b

Print sum, difference, product, quotient

Input a

Input b

difference  a – b

product  a * b

quotient  a / b

2. Decision-making

If a condition is TRUE Then
 …
 …
 …
Else
 …
 …
 …
EndIf

Deciding on a course of
action(s) depending on
the state of a condition
being true or false.

Any number of statements.

Any number of statements.

Note the indentation makes the if structure easier to read.

The Else part is optional.

3. Repetition (iteration)

For i From 1 To 10
 …
 …
 …
 …
EndFor

These statements are repeated 10 times.

Repeating the same
statement(s), depending
on the state of a condition.

A for loop has a fixed number of repetitions.

Note the indentation makes the for structure easier to read.

3. Repetition (iteration)

While a condition is TRUE Do
 …
 …
 …
 …
EndWhile

These statements are repeated
while a condition is true.

Repeating the same
statement(s), depending
on the state of a condition.

A while loop has a variable number of repetitions.

Note the indentation makes the while structure easier to read.

Mathematical operation symbols

Add +

Subtract –

Multiplication *

Division /

Exponentiation ^

Equals = or 

Bracket (parentheses) ()

Greater than >

Less than <

Less than or equal to ≤

Greater than or equal to ≥

Not equal to ≠

Logical operations: and, or, not

Defining functions

Functions are sections of code that are called
upon the perform specific tasks numerous times.

If a program is going to do the same function
multiple times, the function is defined once

before it is called and then can be called when required.

Defining functions

define f(x)
 return 3*x+2

Example:

Functions
must be defined

BEFORE
they are called.

a = f(5) = 3(5)+2 = 17Results:
b = f(7) = 3(7)+2 = 23

calling code
...
...
a = f(5)
...
b = f(7)
...

Assessing pseudocode

Students will NOT be required to write pseudocode from scratch.

Assessing the understanding of pseudocode

Students may be required to analyse what a section
of pseudocode (or a particular line of pseudocode) is doing.

Students may be required to fill in some missing
statement(s) to complete a section of pseudocode.

Students may be required to debug a piece of pseudocode,
(i.e. identify an error in a section of pseudocode & correct it.)

The value of the variable sum
after one iteration of the While
loop would be closest to

A. 1.281
B. 1.289
C. 1.463
D. 1.617
E. 2.136

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf

Answer is C.

The algorithm below, described in pseudocode, estimates
the value of a definite integral using the trapezium rule.

Inputs: f(x), the function to integrate
 a, the lower terminal of integration
 b, the upper terminal of integration
 n, the number of trapeziums to use

Define trapezium(f(x),a,b,n)
 h  (b - a) ÷ n
 sum  f(a) + f(b)
 x  a + h
 i  1
 While i < n Do
 sum  sum + 2 × f(x)
 x  x + h
 i  i + 1
 EndWhile
 area  (h / 2) × sum
 Return area

trapezium(loge(x),1,3,10)

Consider the algorithm
with the following inputs.

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf

Which would be returned when the
algorithm is implemented as given?

A. – 0.351
B. – 0.108
C. 3.25
D. 3.5
E. 4

Inputs: f(x), a function of x in radians
 a, the lower interval endpoint
 b, the upper interval endpoint
 max, the maximum number of iterations

Define bisection(f(x),a,b,max)
 If f(a) × f(b) > 0 Then
 Return “Invalid interval”
 i  0
 While i < max Do
 mid  (a + b) ÷ 2
 if f(mid) = 0 Then
 Return mid
 Else If f(a) × f(mid) < 0 Then
 b  mid
 Else
 a  mid
 i  i + 1
 EndWhile

https://www.vcaa.vic.edu.au/Documents/exa
ms/mathematics/mathmethods2-samp-w.pdf

Answer is D.

Consider the algorithm below, which uses the bisection method to
estimate the solution to an equation in the form 𝑓𝑓(𝑥𝑥) = 0.

The algorithm is implemented as follows.

bisection(sin(x),3,5,2)

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf

Answer is E. 

Inputs: f(x), a function of x
 x0, an initial estimate
 for the x-intercept of f(x)

Define newton(f(x), x0)
 df f(x)  the derivative of f(x)
 i  0
 prev_x  x0
 While i < 1000 Do
 next_x  prev_x – f(prev_x) ÷ df(prev_x)

 Else
 prev_x  next_x
 i  i + 1
 EndWhile

One way of implementing Newton’s method using pseudocode, with a tolerance level of 0.001, is shown below.
The pseudocode is incomplete, with two missing lines indicated by an empty box.

If next_x – prev_x < 0.001 Then
 Return prev_x

Which one of the following options would
be most appropriate to fill the empty box?

If next_x – prev_x < 0.001 Then
 Return next_x

If prev_x – next_x < 0.001 Then
 Return next_x

If –0.001 < next_x – prev_x < 0.001 Then
 Return prev_x

If –0.001 < next_x – prev_x < 0.001 Then
 Return next_x

A.

B.

C.

D.

E.

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/mathmethods2-samp-w.pdf

The output of the pseudocode
is a list of numbers.
The final number in the list is

A. 3
B. 18
C. 38
D. 72
E. 78

https://www.vcaa.vic.edu.au/Documents/e
xams/mathematics/specmath2-samp-w.pdf

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 1:

𝑓𝑓 = 2 + 2 × 3 = 8

𝑡𝑡𝑡 = 𝑓𝑓 = 8

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 2:

𝑓𝑓 = 2 + 2 × 8 = 18

𝑡𝑡𝑡 = 𝑓𝑓 = 18

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛 = 3:

𝑓𝑓 = 2 + 2 × 18 = 38

𝑡𝑡𝑡 = 𝑓𝑓 = 38

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓 = 38

Answer is C. 

The procedure below has been written in pseudocode.

declare integer n
declare integer f
declare integer t1
declare integer t2

set f to 0
set t1 to 2
set t2 to 3
set n to 3

repeat n times
 f = t1 + 2 × t2
 t2 = f
 print f
end loop

2023

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/specmath2-samp-w.pdf
https://www.vcaa.vic.edu.au/Documents/exams/mathematics/specmath2-samp-w.pdf

𝐁𝐁𝐁𝐁 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢,𝒇𝒇 𝒙𝒙
𝐢𝐢𝐢𝐢 𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐚𝐚𝐚𝐚𝐚𝐚 𝐡𝐡𝐡𝐡𝐡𝐡 𝐭𝐭𝐭𝐭𝐭𝐭 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 →

−𝟑𝟑 𝟐𝟐 𝟑𝟑
𝒙𝒙

𝒚𝒚

𝐀𝐀𝐀𝐀𝐀𝐀 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐢𝐢𝐢𝐢 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝐚𝐚𝐚𝐚𝐚𝐚:−𝟑𝟑,𝟐𝟐,𝟑𝟑

𝟏𝟏𝟏𝟏

𝐁𝐁𝐁𝐁𝐁𝐁 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐢𝐢𝐢𝐢 𝐧𝐧𝐧𝐧𝐧𝐧 𝐭𝐭𝐭𝐭𝐭𝐭 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 𝐢𝐢𝐢𝐢 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐭𝐭𝐭𝐭𝐭𝐭 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭.

𝐓𝐓𝐓𝐓𝐓𝐓 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚.

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 @ 𝒙𝒙 = 𝟎𝟎
𝐢𝐢𝐢𝐢 − 𝟗𝟗,

𝐚𝐚𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩 𝐭𝐭𝐭𝐭𝐭𝐭
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
𝐨𝐨𝐨𝐨 𝐭𝐭𝐭𝐭𝐭𝐭 𝒙𝒙 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭.

𝐎𝐎𝐎𝐎 𝒇𝒇 𝒙𝒙 = (𝒙𝒙 − 𝟐𝟐)(𝒙𝒙 + 𝟑𝟑)(𝒙𝒙 − 𝟑𝟑)

𝒇𝒇 𝒙𝒙 = 𝒙𝒙𝟑𝟑 − 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟗𝟗𝟗𝟗 + 𝟏𝟏𝟏𝟏

2024

Define f(x) = x^3 – 2x^2 – 9x + 18

Set c to the value of f(0) = 18

If c is negative, make it positive. This positive value will be used
as the starting value for finding the integer roots to f(x).

Beginning with c = 18, the algorithm tests to see if
f(18)=0?, f(-18)=0?, f(17)=0?, f(-17)=0?, f(16)=0? f(-16)=0?, ...
... f(2)=0?, f(-2)=0?, f(1)=0?, f(-1)=0?.
and prints the value of c or –c only when f(c)=0 or f(-c)=0.

It does not test f(0)=0 because f(0)=18. This is the y-intercept.

It finds these three roots in the order: f(3)=0, f(-3)=0, f(2)=0.

Hence, the algorithm prints the roots in the following order: 3, -3, 2.

These are the integer roots of f(x).

The algorithm with its comments
which explains what it’s doing.

The answer is option D: 3, -3, 2

2024

Part 2 of 5: Python

The computer language Python

Python code reads similar to pseudocode.

Very popular open-source programming language.

Easy to learn.

Python has excellent resources at: https://www.python.org/

Creator of Python:
Guido van Rossum

(1956 –)

https://www.python.org/

Reserved or key words in Python

def return

input print

if

for ... in range

while

else elif

int

float

Number types:Defining functions

Input and output

Decision making

Iterations

(integers)

(decimals)

Python is very strict
on correct indentation.

If you make an indentation error,
Python will notify you of it and
locate it for you to correct.

Errors MUST be corrected
before a program will run.

Indentation makes pseudocode
and real code more readable.

...

...
for
 ...
 ...
 ...
...
...
if
 ...
 ...
else
 ...
 ...
 ...
...
...
while
 ...
 ...
...
...

...

...
for
...
...
...
...
...
if
...
...
else
...
...
...
...
...
while
...
...
...
...

No
Indentation 

Proper
indentation 

Indentation

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

x = a + b

y = 3 * x - 4

z = math.sqrt(3**2 + 4**2)

pi = 3.14

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration) if x == 0:

 ...
 ...
 ...
else:
 ...
 ...
 ...

In an if statement, two
equal signs are required
as this is a comparison,
not an assignment.

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

if x == 0:
 ...
 ...
 ...
 ...

if x != 1:
 ...
 ...
 ...
 ...

if x > 2:
 ...
 ...
 ...
 ...

if x <= 3:
 ...
 ...
 ...
 ...

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

for n in range(1, 10+1, 1): # repeat 10 times
 ...
 ...
 ...
 ...

Step size
Final number
Starting number

The three key elements of algorithm design in Python:

1. Sequencing
2. Decision-making
3. Repetition (iteration)

while x < 100: # repeat while x < 100
 ...
 ...
 ...
 ...

x must reach the value of 100
otherwise, the loop will be infinite

Inputting in Python

a = float(input("a = "))
get a floating-point number from the user
and assign it to the variable a.

b = int(input("b = "))
get an integer value from the user
and assign it to the variable b.

User Python

Note that the number of open brackets
MUST equal the number of closed brackets.

Outputting in Python

print(a, b, a + b)
print the variables a, b and the sum a + b

print(“a = ”, a)
print the string of text “a = ” and
the actual value of a next to this

User Python

print() # print a blank line

Comments in Python

Example:

x = int(input(“x =”)) # get the first number
y = int(input(“y =”)) # get the second number
z = x + y # add the numbers
print(“z = ”, z) # display the result

Comments are preceded
by the hash symbol (#)

Python code Python comments

Comments make real code
easier to understand.

Commenting out sections of Python code
Example:

Statement 1
Statement 2
’’’
Statement 3
Statement 4
Statement 5
’’’
Statement 6
Statement 7
Statement 8
Statement 9

Executed
Executed
‘’’
Not executed
Not executed
Not executed
‘’’
Executed
Executed
Executed
Executed

Skipped

Start of comments
three apostrophes

End of comments
three apostrophes

Python mathematical operation symbols

Add +

Subtract –

Multiplication *

Division /

Exponentiation ** (not ^)

Equals =

Brackets (parentheses) ()

Greater than >

Less than <

Less than or equal to <=

Greater than or equal to >=

Not equal to !=

Logical operations: and, or, not

or %

Python mathematical predefined functions

square root: math.sqrt(x)

factorial : math.factorial(n)

import math # required for mathematical functions

absolute value: abs(x) 𝑥𝑥

𝑥𝑥

𝑛𝑛!

Python mathematical predefined functions

logarithm base 10: math.log10(x)

sine: math.sin(x)

cosine: math.cos(x)

tangent: math.tan(x)

exponential: math.exp(x)

natural logarithm: math.ln(x)

sin 𝑥𝑥

cos 𝑥𝑥

tan 𝑥𝑥

𝑒𝑒𝑥𝑥

ln 𝑥𝑥

log10 𝑥𝑥

import math # required for mathematical functions

https://www.onlinegdb.com/

Make sure you select Python 3

Click here to get more window space

Stop the program
Run the program

https://www.onlinegdb.com/

Define gcd(a, b)
 While a ≠ b Do
 If a > b Then
 a  a − b
 Else
 b  b − a
 Return a

calling code
a = 48
b = 64
Print(a, b, gcd(a, b))

def gcd(a, b):
 while a != b:
 if a > b:
 a = a - b
 else:
 b = b - a
 return a

driver code
a = 48
b = 64
print(a, b, gcd(a, b))

GCD Pseudocode GCD Python code

Euclidian algorithm to find the GCD of a pair of numbers

Implementing pseudocode
in Python on a computer

Part 3 of 5:

Delegates can select which
algorithms they want to code.

SIMPLE ALGORITHMS:

 Swap algorithm

 Euclid’s Greatest common divisor algorithm

 Generating random numbers for simulations

List of Python programs

List of Python programs continued …

Pi algorithms:

• Madhava-Gregory-Leibniz formula
• Newton's method
• Bisection method
• Monte Carlo simulation method

e algorithm:
• e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ...

MISCELLANEOUS ALGORITHMS

 Generating Pythagorean triples

 List primes

 Factorial function

 Square root function

List of Python programs continued …

Sine function and cosine function:
These are used to generate a sin, cos and tan
table of values from 0, 15, 30, 45, ..., 360

Integration:
• Trapezium rule
• Riemann sum

Complex numbers calculations

List of Python programs continued …

swap algorithm

x = float(input("x = ")) # get the 1st number
y = float(input("y = ")) # get the 2nd number
print(x, y) # print the numbers before the swap
x = x + y
y = x - y
x = x – y
print(x, y) # print the numbers after the swap

Note that this algorithm does NOT require a temporary variable.

The actual algorithm.

Euclid’s Greatest common divisor algorithm

def gcd(a, b):
 while a != b: # != means ≠
 if a > b:
 a = a - b
 else:
 b = b - a
 return a

driver code
a = 48
b = 64
print(a, b, gcd(a, b))

Euclid
(fl. 300 BC)

generating random numbers, integers and decimals

import random

random.seed(1) # generate the same random numbers

for i in range(1, 5+1, 1): # loop 5 times
 x = random.randint(0, 9) # 0 ≤ x ≤ 9 integer
 y = random.random() # 0 ≤ y ≤ 1 decimal
 print(i, x, y)

Random Results:

1 6 0.06915053997455245
2 1 0.3046571134385604
3 4 0.7340190767728589
4 9 0.1538597662419427
5 1 0.8113823902195922

These random numbers can be
used for simulation purposes.
An example of this will be the
Monte Carlo simulation method
for calculating pi.

Pi Madhava Gregory Leibniz formula

pi = 4/1 - 4/3 + 4/5 - 4/7 + 4/9 - ...

pi = 0
den = 1
while 1: # infinite loop
 pi = pi + 4/den
 print(den, pi)
 den = den + 2
 pi = pi - 4/den
 print(den, pi)
 den = den + 2

𝜋𝜋 =
4
1
−

4
3

+
4
5
−

4
7

+
4
9
−⋯

Gottfried Wilhelm
(von) Leibniz

(1646 – 1716)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.

Newton's method for finding solutions to equations

import math

def f(x): # the function
 return math.sin(x) # sin(pi) = 0

def df(x): # the derivative of the function
 return math.cos(x) # to find pi

i = 1 # iteration number
x = 3 # initial estimate
error = 1 # dummy error value
while error > 10e-9:
 xnext = x - f(x)/df(x)
 error = abs(xnext - x)
 x = xnext
 print(i, x)
 i = i + 1

Isaac Newton
(1642 – 1728)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓 𝑥𝑥𝑛𝑛
𝑓𝑓𝑓 𝑥𝑥𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞.

Bisection method to calculate pi
The function sin(x) = 0 when x = pi

import math
a = 3; b = 4; i = 1
while i <= 60:
 c = (a + b) / 2
 if math.sin(a) * math.sin(c) < 0:
 b = c
 else:
 a = c
 print(i, “ ”, c)
 i = i + 1

𝑦𝑦 = sin 𝑥𝑥
𝑥𝑥

𝑥𝑥 = 𝜋𝜋

Pi using the Monte Carlo simulation method

import math
import random

random.seed()

count = 0
iteration = 0

while iteration < 1000000:
 x = random.random() # 0 <= x <= 1
 y = random.random() # 0 <= y <= 1
 sum = x * x + y * y
 if sum <= 1:
 count = count + 1
 iteration = iteration + 1
 pi = count / iteration * 4
 print(iteration, pi)

0 1

1

𝑦𝑦

𝑥𝑥

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝜋𝜋
4

𝑥𝑥2 + 𝑦𝑦2 ≤ 1

𝑥𝑥2 + 𝑦𝑦2 > 1

e Euler’s number 2.7182818284590...

e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ...

import math
e = 1
den = 1
while den <= 20:
 e = e + 1/math.factorial(den)
 print(den, e)
 den = den + 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞.

Euclid's algorithm to generate Pythagorean triples

import math
print("Generating Pythagorean triples:")
print("")
print("i m n a b c")
print("")
i = 0
maximum = 10
for m in range(2, maximum, 1):
 for n in range(1, m, 1):
 i = i + 1
 a = m**2 - n**2
 b = 2 * m * n
 c = m**2 + n**2
 print(i, " ", m, n, " ", a, b, c,)

𝑎𝑎 = 𝑚𝑚2 − 𝑛𝑛2

𝑏𝑏 = 2𝑚𝑚𝑚𝑚

𝑐𝑐 = 𝑚𝑚2 + 𝑛𝑛2

𝑚𝑚 & 𝑛𝑛 ∈ ℕ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚 > 𝑛𝑛 > 0
Pythagoras

(c. 570 – c. 495 BC)

Euclid
(fl. 300 BC)

List primes

isPrime function
import math

def isPrime(n):
 if (n <= 1):
 return False
 for i in range(2, int(math.sqrt(n))+1):
 if (n % i == 0):
 return False
 return True

List the primes up to 100
for i in range(1, 100+1, 1):
 if isPrime(i):
 print(i)

2, 3, 5, 7, 11, 13, 17, 19, …

Euclid
(fl. 300 BC)

my factorial function

def factorial(n): # n >= 0
 if n == 0:
 return 1
 else:
 f = 1
 for i in range(1, n+1, 1):
 f = f * i
 return f

driver code
nfPrev = 1
for a in range(0, 70+1, 1):
 nf = factorial(a)
 print(a, nf, nf/nfPrev)
 nfPrev = nf

𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 𝑛𝑛 − 3 × ⋯× 3 × 2 × 1

my square root function

def sqrt(a):
 if a == 0:
 return 0
 else:
 error = 1
 x = a/2
 while abs(error) > 1e-12:
 xNext = (x + a/x)/2
 error = abs(xNext - x)
 x = xNext
 return x

driver code
for a in range(1, 100+1, 1):
 print(a, sqrt(a))

𝐼𝐼𝐼𝐼 𝑥𝑥 = 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥0 =
𝑎𝑎
2

𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛+1 =
𝑥𝑥𝑛𝑛 + 𝑎𝑎/𝑥𝑥𝑛𝑛

2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎 = 𝑎𝑎

def factorial(n): # sin and cos function require n!
 if n == 0:
 return 1
 else:
 f = 1
 for i in range(1, n+1, 1):
 f = f * i
 return f

def sin(x): # the sine function requires n!
 sinx = (x**1)/factorial(1) - (x**3)/factorial(3)
 for n in range(5, 99, 4):
 sinx = sinx + x**(n)/factorial(n) - x**(n+2)/factorial(n+2)
 return sinx

def cos(x): # the cosine function requires n!
cosx = (x**0)/factorial(0) - (x**2)/factorial(2)
for n in range(4, 100, 4):

cosx = cosx + x**(n)/factorial(n) - x**(n+2)/factorial(n+2)
return cosx

𝑛𝑛! = 𝑛𝑛 𝑛𝑛 − 1 𝑛𝑛 − 2 𝑛𝑛 − 3 × ⋯× 3 × 2 × 1

Continued on the next slide …

cos 𝑥𝑥 = 1 −
𝑥𝑥2

2! +
𝑥𝑥4

4! −
𝑥𝑥6

6! +
𝑥𝑥8

8! −⋯

sin 𝑥𝑥 = 𝑥𝑥 −
𝑥𝑥3

3! +
𝑥𝑥5

5! −
𝑥𝑥7

7! +
𝑥𝑥9

9! −⋯

Continued from the previous slide …

driver code
print("deg rad sin(deg) cos(deg) tan(deg)")
for d in range(0, 360+1, 15):

r = d/180 * 3.141592653589793
print(d, r, sin(r), cos(r), sin(r)/cos(r))
list sin cos tan in 15 degree increments

Results:

deg rad sin(deg) cos(deg) tan(deg)
0 0.0 0.0 1.0 0.0
15 0.2617993877991494 0.2588190451025207 0.9659258262890684 0.2679491924311226
30 0.5235987755982988 0.49999999999999994 0.8660254037844386 0.5773502691896257
45 0.7853981633974483 0.7071067811865475 0.7071067811865475 1.0
60 1.0471975511965976 0.8660254037844385 0.5000000000000001 1.7320508075688765
75 1.3089969389957472 0.9659258262890681 0.2588190451025207 3.7320508075688776
90 1.5707963267948966 1.0000000000000002 4.2539467343847745e-17 2.3507581604559628e+16
…

define f(x):
 return sin(x)

a  0
b  5
n  10
h  (b - a)/n
left  a
right  a + h
sum  0
for i from 1 to n
 strip  0.5 * (f(left) + f(right)) * h
 sum  sum + strip
 left  left + h
 right  right + h
end for

print sum

Pseudocode for integration
using the trapezium rule

𝑦𝑦 = sin 𝑥𝑥

𝑦𝑦

𝑥𝑥

10 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9979429863544

1

𝜋𝜋
2

𝜋𝜋
2

, 1

Integration: Trapezium rule

import math

def f(x): # define the function
 return math.sin(x)

#driver code
a = 0 # lower limit of integration
b = math.pi/2 # upper limit of integration
n = 10 # number of trapezium strips
h = (b - a) / n # height of each trapezium strip
left = a
right = a + h
sum = 0
for i in range (1, n+1, 1):
 strip = 1/2 * (f(left) + f(right)) * h
 sum = sum + strip
 left = left + h
 right = right + h
print(sum)

Python code for integration
using the trapezium rule

𝑦𝑦 = sin 𝑥𝑥

𝑦𝑦

𝑥𝑥

10 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9979429863544

1

𝜋𝜋
2

𝜋𝜋
2

, 1

Integration: Riemann Sum

import math

def f(x): # define the function
 return math.sin(x) # f(x) = sin(x)

driver code

a = 0 # lower limit of integration
b = math.pi/2 # upper limit of integration
n = 100 # number of trapezium strips

dx = (b - a) / n # dx width of each rectangle
sum = 0
x = a
while x <= b:
 stripArea = f(x) * dx
 sum = sum + stripArea
 x = x + dx
print(sum)

Bernhard Riemann
(1826 – 1866)

Python code for
integration using a
Riemann sum

Complex numbers

−1 = 𝑖𝑖

0
𝑅𝑅𝑅𝑅

𝐼𝐼𝐼𝐼

1

𝑖𝑖

0, 1 = 𝑖𝑖
1, 0

0, 1

Complex numbers

import cmath # required for complex number calculations

e = cmath.e # define e

pi = cmath.pi # define pi

i = 1j # define i

i = complex(0, 1) # define i

i = cmath.sqrt(-1) # define i

i = cmath.e**(1j*cmath.pi/2) # define i

Alternative
definitions
of i

Complex numbers

𝑒𝑒𝑖𝑖𝜋𝜋 = −1 print(e**(i*pi))

print(e**(i*pi)+1)𝑒𝑒𝑖𝑖𝜋𝜋 + 1 = 0

−
1
2

+
3

2
𝑖𝑖

3

= 1 print((-1/2+(cmath.sqrt(3)/2)*i)**3)

−1 = 𝑖𝑖 print(cmath.sqrt(-1))

𝑖𝑖2 = −1 print(i**2)

Euler’s identity

Part 4 of 5:

Implementing
Python on the TI CAS

Python IS available
on the new

TI-nspire CX II
CAS Calculator

(Python is NOT available
on the fx CP400
Casio ClassPad)

Bisection method
to find the value
of pi

Start
typing
Python
code here.

for d in range(1,10000,1):
 d=d+1–1*1/1

Optional delay to slow down the program.

Bisection method to
find the value of pi

To run the code press
menu 2 1 (Ctrl+R)

Bisection method to find the value of pi

Python on the TI CAS
has many of the
commands built into
its menu system.

This will save you a lot of typing
on the TI-CAS’s non-QWERTY.

The following screens show
the main Python menu features.

menu 1 2 3 4 5 6

menu 7 8 9 A B

To stop an infinite loop in
Python on the CAS, press and
hold the On button for a few
seconds. This will force it to
stop. However, this will not
work on the software emulator.

Free online resources:
Tutorials and

Integrated Developments Environments (IDEs)

Part 5 of 5:

An IDE is where you can write and run your own
Python code to test your pseudocode and algorithms.

https://wiki.python.org/moin/BeginnersGuide https://www.w3schools.com/python/default.asp

Free online tutorials for learning Python

https://wiki.python.org/moin/BeginnersGuide
https://www.w3schools.com/python/default.asp

https://www.onlinegdb.com/

Make sure you select Python 3

https://www.online-python.com/

Free online Python Integrated Development Environments (IDEs).

https://www.onlinegdb.com/
https://www.online-python.com/

Enzo Vozzo

After working as a Technical Officer at Telstra, Enzo graduated from Monash University in 2005
with a Bachelor of Technology (Computer Studies) and taught Electronics and Communications
Engineering at Chisolm TAFE.

In 2013 he graduated from RMIT University with a Graduate Diploma of Education teaching
Secondary School Mathematics and Science.

Since 2016 he has been teaching Mathematics at Mentone Grammar.

Email: exv@mentonegrammar.net

 iphiepi: https://www.instagram.com/iphiepi/

 Channel: Maths Whenever:
https://www.youtube.com/channel/UCFLdfe_y2OQ1MZvGjha9taQ/videos

𝑖𝑖 = −1 𝜙𝜙 =
1 + 5

2

𝑒𝑒 = �
𝑛𝑛=0

∞
1
𝑛𝑛! 𝜋𝜋 = 4�

0

1

1 − 𝑥𝑥2 𝑑𝑑𝑑𝑑

mailto:exv@mentonegrammar.net
https://www.instagram.com/iphiepi/
https://www.youtube.com/channel/UCFLdfe_y2OQ1MZvGjha9taQ/videos

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83

